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Abstract

In this paper we construct dynamical models that partially reproduce
observations of the HI in the barred spiral galaxy NGC 3992. The models are
constrained by the large scale structure and kinematies of the gas (Paper I), and
by the near infrared morphology of the bar. The dynamical components we have
considered consist of (1) an axisymmetric Toomre disk of index n=0 and truncated
as indicated in Paper I, (2) a triaxial stellar bar constrained by near infrared
photometry, (3) an oval distortion of the axisymmetrie disk, and (4) a spherical
halo constrained by the observed kinematies and trucation of the disk (Paper I).
The gas response to all or combinations of these components was investigated
using the "beam scheme", hydrodynamical procedure. The strength of this
approach, within the limitations of our observations, is considered in detail.
Owing to the presence of the central bi-symmetry, each promising modél had to
be projected into the same orientation as the galaxy and then convolved with a
synthetic antenna response. Only in this fashion could model and observation be
compared properly.

The disk and halo components were chosen to give circular velocities in
agreement with the HI kinematies. An oval distrotion and/or a bar were added to
produce both the observed, central deficiency in the gas and the systematic
kinematic phenomena in the bar zone (the kinematic offset). The oval distortion
controls the gas response at large radii but in addition, a triaxial bar, with a mass
of 18-30% of the disk, must exist at the center of NGC 3992. This latter element
produces the central depression and kinematic offset in the gas. Corotation of the
total bisymetric component must occur at the radius of the bar. Also, we find

that a halo must surround the galaxy, containing mass roughly equivalent to that



of the disk interior to the disk radius.

We find our models suffer the major shortcoming that the gas arms of the
models do not ceoincide with the tightly wound, star formation arms that are
observed. Either the dynamies of our models are incomplete, or non dynamical

causes are important to the present conjugation of the arms.



I. INTRODUCTION

In our earlier paper (Gottesman et al., 1984, hereafter Paper I) we discussed
high resolution observations of the neutral hydrogen content of two barred spiral
galaxies, NCG 3992 and NGC 4731. In this paper we consider the dynamical
characteristiecs of NGC 3992.

Kinematical studies of the gas in galaxies are important, because over the
large scale, the gas flow is a response to gradients in the underlying gravitational
potential. In circularly symmetric systems, one can solve for the mass
distribution because a unique rotation law can be constructed without difficulty.
However, in non-axisymmetric systems, non-circular motions must exist. These
motions add considerable complication to the problem of relating the observed
motions to the dynamiés, because a non-axisymmetric velocity field cannot be
established solely from observed radial velocities. Hence, an alternative method,
inferring velocity fields from model mass distributions, has proven extremely
useful. Over the past decade, sophisticated codes of various types have been
developed to model the gas response in an axisymmetric disk to the effects of a
bar rotating in the disk. (Roberts, 1979 _has reviewed early work, while a more
i‘ecent survey is given by Prendergast, 1983.) However, until recently high quality
observations with which to compare these models have been lacking. Radio
studies have either been of low resolution and sensitivity (NGC 5383: Sancisi et
al., 1979) or of peculiar systems (NGC 4258: van Albada, 1980). Optical
observations undersample the disk of the galaxy, although they have effective
resolutions of 1"-2" (See for example Pence and Blackman 1984 a, b).

In contrast, our examination of NGC 3992 sampled completely the disk of

neutral hydrogen, albeit with an average resolution of 23" (or 23% of the bar



length). Hence, we can describe with high precision the beam-smoothed response
of the gas, at all points in the disk, to the rotating potential of the bar; we are not
limited to phenomena associated with the high surface brightness regions of the
bar and spiral arms. Our observations are summarized in Table 1.

NGC 3992, the galaxy we will discuss, is an intermediate range spiral of
mixed ring/spiral mode. De Vaucouleurs (1959), describes these systems as having
two main arms with faint additional branches near the rim of the lens. The arms
of this system are thin, tightly wound, and extend (in one case) through almost
360° in azimuth. Moreover, they have been resolved into numerous nebular beads
of stellar activity. In a survey of barred spiral galaxies, Elmegreen and Elmegreen
(1985) desribed NGC 3992 as displaying prominent gas spiral arms, in contrast with
the other systems which showed stellar arms. They interpreted this observation to
mean that star formation in NGC 3992 has been important over the last 108
years. Another property of the system, that may be associated with this stellar
activity, is the bright radio continuum emission from the disk. If these thin, star-
formation arms are generated by shocks, the compression of the gas in the disk
would enhance any magnetic field that was initially present, and increase the non-
thermal brightness. Certainly of the 5 barred spiral galaxies we have observed to
date (NGC 1073, 1300, 3359, 3992 and 4731), NGC 3992 has the most extensive
and brightest disk in the radio continuum ( "/; >~ 0.9K »V =[4i5MHz). Though
less obvious, atomic hydrogen is associated with these arms, as well. Figure 1
shows a correlation of the neutral hydrogen with the optical spiral features in the
outer parts of the disk, where the arms are well resolved by our synthesized
beam. Similarly, in these same regions, as seen in Figure 2, velocity perturbations
are visible where the line of sight traverses the optical arms. Apart from the
depleted center, the apparerit distribution of ato.mic hydrogen in a broad, patchy

disk appears primarily to be an effect of our modest resolution, coupled with the



inclined disk and tightly coiled nature of the spiral arms.

In the sections that follow we will consider the nature of the bar and explore
the overall ability of a particular hydrodynamie procedure, the beam scheme
(Sanders and Prendergast, 1974; Huntley, 1980) to model the optical and atomic
hydrogen features of NGC 3992. We will discuss the strengths and weaknesses of
several models, in which the dynamical properties of a bar, disk and halo have
been varied. Lastly, we will compare and discuss the observations with these

models of the beam smoothed gas and velocity field distribution.
II. SURFACE PHOTOMETRY AND BAR FIGURE

Observations of the surface brightness of the bar component of an SB galaxy
may be used to constrain models of its mass distribution (Stark, 1977; Ball, 1986).
This information is a necessary complement to that given by the rotation curve,
since for bar models the departures from axisymmetry are of primary
importance. If the isophotes are modeled as a set of nested, similar ellipses, and
the mass-to-light ratio within the bar is assumed constant, the derived mass
distribution is a family of triaxial ellipsoids with one degree of freedom. The
members of this family converge toward a single solution as the observed
elongation of the bar increases. Ball (1984, 1986) has used this technique to infer
the contribution of the observed bar to the potential in the SBe galaxy NGC 3359.

The case of NGC 3992 presents difficulties in the application of this method,
stemming from the complexities of its isophotes in the bar region. Figure 3
presents a smoothed image of the galaxy in the I passband ( )\ 8250 A), from the
plate of Elmegreen (1981). This image has been given a relative intensity
calibration by means of a calibration wedge, but no absoluté photometry of the

galaxy in this passband is available, so the flux scale remains arbitrary. The first



complication is the component at the galaxy's center, obviously rounder than the
bar, which we shall call the bulge. Its presence is fairly typical for the early (SBb)
type of NGC 3992. The bulge must be subtracted from the data before isophote
fitting of the bar may proceed, as we will detail below. After this step has been
performed, however, the brightness profile along the bar major axis remains quite
anomalous. Elmegreen and Elmegreen (1985), who catergorized the bar brightness
profiles of 15 barred spiral into two principal types, were unable to assign NGC
3992 into either group. We believe that the remaining difficulty is caused by dust
obscuring significant protions of the bar, even at these long wavelengths. The
patches of dust within the bar may be seen quite clearly in the photograph shown
by Sandage and Tammann (1981). Because of these two effects, there is a
considerable uncertainty in trying to extract the true underlying brightness
distribution of the bar of NGC 3992 from the data. We will use the photometry to
establish some observational limits on the form of the bar, and then try to select a
plausible model within those limits with the help of as few additional assumptions
as possible.

The first step in quantitative analysis of the isophotes was convolution by a
circular Gaussian beam to smooth the small-scale fluctuations of the data. The
beam used had a width (FWHP) of 6.72" or two pixels, and is therefore similar to
two-~dimensional Hanning smoothing. These are the data displayed in Figure 3.
Then, the central bulge was modeled with several different distributions. Models
using both de Vaucouleurs and Hubble type profiles (cf. de Vaucouleurs and
Capacciolli, 1979) were found quite unsatisfactory. The best fit, of several simple
empirical expressions that were tried, was to a Gaussian distribution (G"=7.0" after
correcting for the smoothing). This component contributes 60 percent of I-band
light at the galaxy center, but only 0.1 percent at a radius of 30". The orientation

and ellipticity of this component are close to those expected if it is oblate (axis



ratio = 0.6) and concentric with the galaxy's disk.

The dilemma of the bulge-fitting procedure in this galaxy is well illustrated
by referring to Figures 4 and 5. A model bulge having three—quarters the
amplitude of the best-fit bulge was subtracted from the data, and the resulting
isophotes are displayed as a contour diagram (Figure 4) and as a profile along the
bar major axis (Figure 5). Although the sharp central peak has been removed by
the chosen fit, the innermost contours remain obviously round, indicating that the
significant contribution from the inner bulge is still present. However, the form
of the brightness distribution in the bulge has been fit quite well by the model, and
the only way to account for the remaining bulge light is to increase the relative
amplitude assisgned to the bulge component. If this enhanced bulge is computed
and then subtracted from the data, the remaining brightness distribution will be
more purely barlike in shape, but will have a substantial depression in brightness
near the galaxy center. A bar with such a central hole hardly seems plausible in
physical terms, if the brightness of this component is of stellar origin. Irregular
brightness fluctuations near the center also are apparent. While one can adjust
parameters to give a better fit over some selected part of the image, all bulge
subtractions leave one with a bar whose radial profile fails to be monotonically
decreasing. This behavior is suspeect, in the context of previously published barred
spiral surface photometry (e.g., Benedict, 1976; Okamura, 1978; Blackman, 1983;
Elmegreen and Elmegreen, 1985). As mentioned above, the most plausible
explanation is that the dust seen in the blue photograph of Sandage and Tammann
(1981) obscures the I-band light from the bar, over some unknown portion of its
extent. Therefore, an elaborate reconstruction of the bar volume brightness
distribution from these data is not poss.ible. The importance of these
uncertainities is lessened, however, since the potential due to an extended mass

distribution is given by an integral equation, and so is not very dependent on the



fine details of that distribution.

Given these limitations, we have employed the following simple approach to
modeling the bar surface brightness. The orientation and extent of the bar are
determined from the positions of the extreme ends of its major axis. Its apparent
axial ratio ,30 is estimated from fitting ellipses to portions of the outermost
contours, after subtracting the bulge as well as possible. The geometric
parameters to the fit are then fixed, and only the radial brightness profile remains
to be found. No unique determination of this profile is possible, but a plausible fit
was created by interpolating smoothly across depressions in the "bulge-fre-e" bar
profile under the assumption that the true profile is monotoniec. The resulting
profile is fairly well fit by a Gaussian bar, which also has the advantage of being
easily integrable. The parameters of the fit, in Stark's notation, are, for the two
Euler angles, € and (}', 389 and 35°, respectively; ﬂo = 2.6"; bar semimajor axis =
62" and length scale O; = 24."4 for the Gaussian bar, measured along its projected
major axis.

The corresponding volume brightness distribution is a single-parameter
family specified by the third Euler ang1e¢ . Physically, the members of this
family differ in the degree to which they are flattened by the attraction of the
disk. (This analysis assumes that one axis of the triaxial bar coincides with the
disk rotation axis.) Mathematically, solutions are allowed which vary from having
zero thickness in the disk plane to having zero thickness in a plane perpendicular
to the disk. The range of possible values of ¢ is from 45.8° to 54.8°. We will
assume, in the dynamical models presented below, that the shortest axis of the bar
is perpendicular to the disk, so that the bars are prolate or flatter. This
constraint places an upper limit of 48.4° on¢ . The true axial ratio of the bar is
2.8 for the perfectly flat case and 1.6 for the perfect prolate case.

If the surface brightness distribution, as a funetion of semimajor axis ag, is
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given by the Gaussian,

.I('d.s)r- KexP[— (a:)/czq?:)ll 1)

one readily finds from Stark's equation (13) that the volume brightness also follows

a Gaussian)

¢ Yz 2
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where a,, is the semimajor axis of the shell (ef., Stark's equation 6).

In this equation, the geometrical factor f is defined in terms of the Euler angles
and the intrinsic axial ratios (t, u). The latter are the lengths of the two bar axes

that lie in the plane of disk, in units of the third axis. With the convention that

t>u,
+f =tnlp silprulintb P +ants. (3)

For each chosen value of ¢, a unique volume brightness distribution is specified by
equation (2). Since the photometry does not have absolute calibration, the
constant K is in arbitrary units. The final assumption needed to calculate model
bars from this information is that the mass-to-light ratio within the bar is
constant. Then the mass distribution of the bar is proportional to the volume
brightness distribution of equation (2), and its potential can be ecalculated by
adding the contributions of a set of thin, triaxial shells, or homoeoids (see
equation (A 12) in the Appendix). The forces at each point of the model
calculation are then computed by numerical integration of equations (A 16a) and
(A 16b) over the portion of the bar which lies interior to that point. The

dynamical models presented in this paper use 300 triaxial shells to approximate
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the bar of NGC 3992. Clearly, this representation of the bar must be seen as one
which is allowed by the photometric data, rather than required by them.
However, extensive numerical experiments have shown that the response of the
gaseous disk is not overly sensitive to the precise form of the bar (see also Sanders

and Tubbs, 1980).

OI. HYDRODYNAMIC MODELING PROCEDURES

For purposes of modeling the HI distribution in our program galaxies, we have
used a 2-dimensional, Cartesian version of the gas-dynamical scheme known as the
"eam scheme” (Sanders and Prendergast, 1974). While the beam scheme is only
one of many numerical techniques useful for ealculating 2-dimensional gas flows,
we have several reasons for choosing the beam scheme to model gas flows on a
galactic scale in this or any other galaxy. Some of these reasons constitute
advantages which the beam scheme exhibits relative to other schemes; other
reasons relate more to computational convenience or to continuity of effort, since
considerable energy must be invested in the development, coding, and testing of
any numerical, 2-dimensional, gas dynamical scheme. Our reasons for choosing
the beam scheme are presented below.

1. The beam scheme has previously demonstrated its effectiveness in modeling
gas flow on a galactic scale (Huntley, 1978; Sanders and Tubbs, 1980; Schemp,
1982).

2. The results of this scheme are consistent, in the appropriate limits, with
particle orbit theory (Sanders and Huntley, 1976; Huntley, 1977).

3. Results from the beam scheme agree, to the limits of computational
resolution, with the results of other 2-dimensional gas codes computing

models which have the same initial conditions (Sanders, 1977; Berman,
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Pollard, and Hockney, 1979).

When used at a typical computational resolution of 64 x 64 cells, this scheme
provides much more than sufficient accuracy and spatial resolution to model
current VLA observations of HI. The present version of the beam scheme is
second-order accurate in time (time-centered, leapfrog equation-of-motion)
and better than first order accurate in space, owing to the particle nature of
its thermal diffusion. While the leapfrog technique strictly requires a
constant time step, second order accuracy can be maintained provided that
the change in the size of the time step is small between successive steps.
(This result can be verified by a Taylor series expansion.) For our models,
this change is at most about 2%. We note, also, that the leapfrog produces no
significant change in our dynamical results over purely first order beam
scheme calculations; at the resolution of our HI observations, there is no
discernable difference. Van Albada (1982) compared the beam scheme with
several otr’1er numerical methods and concluded that it is unsuitable for
galactic gas dynamics. While we consider this work to be an excellent
contribution, their conclusions have little bearing in the present context
because our HI observations have such low spatial resolution (1.6 kpe) relative
to the grid size of our models (0.49 kpe) that the predictions of calculations
with the beam scheme are sufficiently accurate. (We have confirmed this
conclusion by halving the grid size in a few models.) At higher resolutions
(e.g., those of optical observations of the dust lanes, which, presumably,
dilineate shock fronts) the use of an improved numerical technique is
warranted.

The beam scheme, while clearly resembling standard upwind, finite-

difference schemes, also exhibits properties similar to many "particle-in-cell”
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or even "smooth-particle" gas codes (Roache, 1976). This duality of
properties represents a compromise in modeling between the mathematical
formality of treating a continous fluid and the physical ecomplexity of treating
a collection of diffuse HI elouds.

As a particle scheme, the boundary conditions are simplified. Transparent
boundaries may be used for most bar-dominated models, without the need for
specifying boundéry values or derivatives as in implicit, finite difference
schemes (ef., Liebovitch, 1978).

As an upwind difference scheme, the beam scheme has excellent stability
properties in all regions where the gas flow is not transonie, provided that the
so—called "Courant Condition" for numerical stability is met (Roache, 1976).
In practice this condition was used to determine the time step.

In addition, the "artificial viscosity"™ or "diffusion terms" (numerical
approximations to physical viscosity and heat conduction) are added
automatically by the beam scheme at minimal levels sufficient to ensure
numerical stability of the flow, even in the presence of shocks. This implicit
viscosity can result in a considerable saving of computer time, relative to
schemes where an explicit numerical viscosity must be added and minimized.
The beam scheme exists in several versions of reasonably optimized computer
code. It- runs efficiently in minimal storage on a 32-bit computer. Even
single~precision, first-order versions of this scheme suffer no significant loss
of accuracy over several galactic disk-rotations, relative to double-precision
and/or second-order versions. Finally, versions of the beam scheme which
include the effects of gaseous self-gravity can be made to run on a moderate-

sized computer.

A 2-dimensional, Cartesian (rather than polar) version of the beam scheme was
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chosen for three reasons. First, in the Cartesian version, both dimensions of all

cells are the same. Hence, the effective coefficient of numerical viseosity is

more nearly constant everywhere in the disk. Second, in the event of numerical
artifacts in the calculations (caused, for example, by transonic flow), such
artifacts would manifest themselves with Cartesian rather than polar symmetry.

That is, on a Cartesian grid, numerical artifacts would not form rings or tightly-

wound structures which might otherwise be mistaken for real, physical features.

Third, while computing the gas flows near the center of a cartesian disk is

somewhat crude, the center cell (or inner ring) of a polar grid can be particularly

troublesome.

Before describing our models, we comment briefly on some of our numerical
procedures. Over the past few years, we have experimented, extensively, with the
beam scheme, thereby gaining experience with the variety of numerical artifacts
which can arise if proper care is not taken, and in techniques for suppressing these
artifacts. Guided by our experiments, we adopted the following procedures in our
modeling:

1. The Cartesian referance frame in which the computations were carried out
(designated hereafter as the ecalculational frame), was allowed to rotate
rigidly at an angular speed such that co-rotation with gas in the disk of the
unperturbed model would occur at a distance of 5 cell lengths beyond the
outer edge of the computational grid. The model disk had a radius of 32
cells. Hence, the angular speed of the calculational frame was adjusted so
that it would co-rotate with hypothetical matter, moving in circular orbits in
the disk plane, at a radius of 37 cells. This procedure was adopted to
minimize the artifacts of viscosity, while preventing a co-rotation resonance
from arising anywhere on the model disk with the computational frame. Such

computational co-rotation must be avoided, because it produces regions of
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transonic flow where the stability of the beam scheme no longer is
guaranteed. Our selection of computational frame has the unfortunate effect
of smearing-out shock fronts, due to the motion of the bar across the grid.
However, we consider this to be an acceptable compromise, because the grid
size is less than one-third of the linear scale of the HI resolution.

The forcing terms, due t6 the rotating oval distortions and triaxial bars, were
increased linearly with time, from zero to their final, constant values, over
an interval of 100 dimensionless time steps (roughly one-half of a bar rotation
period). We have verified that this turn-on procedure is gradual enough to
allow the gas to adjust, quaisitatically, to the noncircular forcing terms.

All models were allowed to evolve for at least 400 time steps (approximately
2 bar rotation periods). By that time, the gas throughout the model disks had
settled into quasi-static, frame independent, trailing spiral patterns.
Thereafter, due to the ubiquitous effects of numerical viscosity, each model
slowly accumulated gas at its center and expelled gas through the outer

boundaries of the computional grid.

During the course of the present research, we have constructed the response of

the gas in NGC 3992 to various combinations of gravitational potentials. The self-

gravity of the gas was not included in our models, since My/Mgggg = 0.017 and

the mass of Hy cannot be great (Paper 1). Moreover, we have restricted our

modeling to r < 3.6' (14.9 kpe) from the center of the galaxy. That is the region

where the spiral arms reside, and, excepting in the central "hole", the signal-to-

noise ratio is high. Consequently, our models do not extend to the photometric

radius, Rgg = 3.8, which is approximately the radius at which the disk mass

distribution is truncated, as well (Paper 1). In addition to having an axisymmetric

(stellar) disk component with a central bulge, all models but one (Model 1) include
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a "bar" potential, rotating rigidly in the plane of the disk, to drive the spiral arms.

In most models, the (stellar) "bar" was represented by an inhomogeneous,
triaxial ellipsoid, plus an oval distortion of the surface density of the
(axisymmetrie) disk. In the following subsections, we summarize the

characteristics of each of these mass components.
a. The Axisymmetrie disks

The observed, angle-averaged, HI rotation curve of NGC 3992 rises steadily
out to r = 3.2' (Paper I, p. 483). Since the halo mass within Rgs cannot exceed
significantly the disk mass within that radius, and the total mass of the galaxy 4 x
1011 M, (Gottesman and Hunter, 1982, and Paper I), all models have included a
Toomre Disk of index n = 0 as their disk component. When such a disk is truncated
in a self-consistent fashion, Hunter, Ball, and Gottesman (1984), hereafter HBG,
have designated it a Generalized Mestel Disk or GMD. Interior to truncation
radius R, the circular rotatioﬁ law of a GMD at distance r from its center may be

expressed as,

Vi = C [I _ b ]VL, (4)

(B*+rd)%e

where constant shape factor b has the dimensions of length, and constant C has

dimensions of velocity. The total disk mass is given by,

S 2CR [_ b 1.2RAN]., @
M_(R) ~ = [l > t (/»)]

In calculating the masses of the model disks, we have assumed that R = Rgs = 15.7

kpe. (Truneation at some radius is a physical necessity, since My, (R) diverges as
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R->==). Our reasons for selecting R = Ro5 are discussed in Paper I. For details on
the GMD, as well as other truncated, Toomre Disks, the reader should consult
HBG.

Elmegreen and Elmegreen (1985) have shown that the IR surface brightness
of the disk of NGC 3992 may be approximated by the exponential distribution I(r)
= Ioe‘0'1479r, where r is in kpe. If M/L for the disk is constant, then the disk
surface density would have the same shape, viz., J{r) = Ae0.1479r Our best
models of NGC 3992 (Models 2 and 3) include identical GMD's, having a surface
density very similar in shape to the above distribution outside of the bar region.
The only significant disagreement between the IR surface brightness distribution
and the truncated disk surface density distribution occurs near st, where the
surface brightness is low. However, within Rys the agreement between the IR
surface brightness distribution and the infinite disk surface density distribution is
excellent. While mathematically convenient, our truncation procedure is arbitrary
in that it was chosen to preserve the rotation field for the infinite disk for all r£
R on the finite disk. Nonetheless, to avoid orbital instabilities near the "edge",
the actual truncation must be less abrupt than our model allows (for details, see
HBG).

For purposes of calculating the gas responses, we have adopted surface
densities,cgr), and interior disk masses, M(r), appropriate for the limiting case as

R>oe ; i.e., we have modeled cases corresponding to interior portions of n = 0

Toomre Disks. The logical justification for this procedure stems from the fact
that interior to the truncation radius R, the rotation curve of a GMD is
independent of R. Consequently, having specified C, b, and the pattern speed of
the "bar" potential, the location of co-rotation, as well as all resonances within
the computing grid, are identical for both an n = 0 Toomre Disk and for a GMD

with our selection of R. (R lies beyond the outer boundaries of the computing
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grid.) The main practical reason for modeling an interior portion of a surface
density distribution which extends to r = oo, is that, in that case, we can use a
Fourier technique to solve Poisson's Equation exactly, and in simple closed form,
for the potentials and forces of multipole distortions of 0; (r). In particular, oval
(29) distortions are crucial ingredients in our best models. For an n = 0, Toomre

Disk, the expressions for O: (r) and m(r) read:

2

Oy = C (s r? )-yz

——

(Z7G) ) (8)

and

z [}
Vv\o(f) = _C___. [(h"—rrl)/"— L] .
= m

b. The Triaxial Bars

As described in Section H, the triaxial, stellar bars were modeled by
superimposing 300, concentric homoeoids, having different volume densities. The
volume brightnesses of the shells were required to be consistent with the surface
photometry; then, volume densities were calculated by assuming a constant M/L
for the mixture of stars in the bar. We justify our assumption of a constant M/L
in the bar by noting that the enlongated orbits of those stars are of relatively
short period. Thus, the orbits of typical stars will take them to a wide variety of
galactocentric radii and consequently any small volume of the bar is likely to be
well mixed. This conjecture is supported by the uniformity of the color
throughout the bar (Elmegreen and Elmegreen, 1985).

Using the formula derived in the Appendix, the x and y forces of each
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homoeoid were calculated at each cell in the computational grid. Then, the total
x and y force components due to the bar were computed at each cell by summing
over the contributions of each homoeoid. (In practice, these forces were
computed only once, stored, and then updated at each cell as the bar rotated
relative to the computational grid.)

The degree of flattening of the triaxial bars, measured by c,/by, is a free
parameter in the models (b, is the semi-minor axis of the triaxial bar in the disk
plane of the galaxy and e, is the corresponding quantity parallel to the rotation
axis). We have experimented with cases, ranging from prolate figures (c;/by = 1)
to highly flattened triaxials, for which ¢;/by = 0.1. Fortunately, for a fixed bar
mass and pattern speed, the ct/bt ratio was found to have only minor influences on

the gas response in an otherwise identical model.

c¢. Oval Distortions

Oval distortions of the axisymmetric density distribution were included in
many of our models. This device enabled us to extend the non-axisymmetric
forces to radii beyond those effected signficantly by the observed bar. We have

considered even, multiple distortions of the surface density of the form ,

Qe = g cry [' -+ Am(r‘) COS(MB)] ) (8)

where m = 2, 4, 6, ... . We have sought, and found, amplitude functions, Am(r),
such that exact solutions of Poisson's Equation can be obtained in the disk. For a
discussion of our approach, see Sanders and Huntley (1976), and Huntley, Sanders,

and Roberts (1978). Although we have modeled cases which include quadrgpole
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(m=2) and higher order distortions, for present purposes we restriect our
consideration to a class of quadrupole or oval, distortions. For these oval

distortions, the surface densities are given by,
T )= Gv) + G, (r,8) =
-(L1+3),

c -y,
(2%6'—) (b2 r?) "[1 +E, r-"(g 22 V"(‘Qz-r r’) co)s(ze)} ) ©

where 1=1 or 2, /5 is the length scale characterizing the distortion, and
coefficient Eo = E;z_(t) gauges the amplitude of the distortion. In
most of our numerical calculations, Eczwas increased linearly with t, from zero to
its maximum value, over and interval of 100 dimensionless time steps.
Thereafter, it was held constant at its maximum value. The potentials,
corresponding to these density perturbations, read,
2 2 i
8= EaC (L)1 4201+ g
£ 3 (5 (1+ 77'43)3/" [l + (I -r%z).{qz
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For r/ﬁ)b l) (#o ;» r and oa 7 ¥ . The perturbed r and & force components are

computed fror; Ithe gradient of the potential, viz.,
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We have experimented, extensively, with both 1 =1 and 1 =2 oval distortions.

For the immediate purpose of modeling NGC3992, we need concern ourselves only
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with the 1 =2 case, for which the force components~r’4

. This case is important in
the present application in that the oval distortion must be able to modify the gas
motions in the bar region, while not significantly effecting the motions in the

outer disk. For the 1l =2 oval distortion, the perturbed forces are given by,

Fino =5,C S (DZAGN
f /’)(Z 2 )i Yo 20,

c2,~ 5y (12)
and
= 2&,Crrt .
T =Y (_fj”;) (1+5) s c20) (13)

All models with oval distortions, which are shown in the tables and figures in this
paper, incorporate the above formulae for calculating the perturbed forces due to
the distortions. These distortions are taken to be parallel to and cororate with the
bar. We have not attempted to model the response in a system for which the

stellar orbits (the distortion) beyond cororation are orthogonal to the bar.

d) Spherical Halos

When spherical halos were included as a mass component in our models, then

(volume) density distributions were assumed to be of the form,

P ,0<rsy

/Om - B ’ (14)
L(E.), r>n

For radii greater than core radius rs, the halo mass contained within radius r is

given by,
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c (16)

In addition to the disk radius R, ten parameters fully determine each model.
However, the number of parameters that can be varied freely is seven (at most),
and the results are relatively insensitive to some of these. The ten parameters
are: disk scale length and truncated mass, b and MDT; oval distortion length
scale and amplitude, IA and & o2; halo length scale and mass, ro and MH(R); the bar
semimajor axis, mass, flattening ratio and pattern. speed, a¢y My, ct/bt and ) p*
The apparent bar length, ay, is fixed by the photometry, while the amount of
ﬂattening,ct/bt, is observationally totally indeterminate, and when specified
determines the ratio bt/at. The observations provide no direct information
about L2 p’ and the presence of a central bulge and strong triaxial figure precludes
our obtaining useful photometric data about the oval distortion component. The
remdining, five parameters (bar mass plus all disk and halo quantities) are all
constrained, collectively, by the observed rotation curve, the amplitude and form
of which removes at least two degrees of freedom. For NGC3992, the abrupt drop
in rotational velocity in the vicinity of Rys (the trucation "signature") may be
explained by letting My(R)/Mpr~~ 1 (see Paper I). Similarly, the fact that the
observed rotation curve does not have a central maximum,shows that Mp/Mpr<
0.3. There are additional, dynamical constraints on the triaxial bar, which will be
discussed in the next section. From extensive numerical experimentation we find

that the models are particularly sensitive to the parametersﬂ-p, 202’ /AJ and

My/Mpr. Consequently, our modeling strategy has been to fix the parameters
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Mpt» MH(R), b and r, and then to construct models in which the above, four
quantities are varied. Unfortunately, the gas response is non-linear, and usually it
is impractical to vary more than one parameter at a time. In our systematic
modeling, we expended considerable effort in exploring the influence of the four
"sensitive" parameters, and in making the final adjustments of all model
characteristies. |

Before concluding this section, we address a difficulty which is inherent in
deriving the angle-averaged galactic rotation curve from the observations. Apart
from difficulties in measurement, particularly the necessity of using a cos#
weighting scheme to de-emphasize the largely-transverse velocities along the
minor axis (See Paper I), an important physical ambiguity remains. For a purely
axisymmetric disk, the numerical value of the velocity at each radius depends on
the inclination of the disk. But the shape of the rotation curve is independent of
both the inclination angle i and the position angle of the line-of-nodes, PA.

For an elongated or ovally-distorted disk galaxy with quasi-elliptical gas
flow, the shape of the angle-averaged rotation-curve can depend considerably on
the true orientation of the galaxy in space. For example, if we consider model 3
of Section 4, then Figure 6 shows that by varying the location of the major axis of
the bar relative to the position angle of the line-of-nodes (i.e. by arbitrarily
rotating the disk at a fixed inclination in space) we can radically alter the
apparent, angle-averaged rotation-curve. The dependence of the observed
rotation-curve on the true space angle between the bar and the line-of-nodes is
therefore apparent.

For the ovally-distorted disk, the shape of the rotation-curve at a fixed bar-
to-line-of-nodes angle, BL, is still not sensitive to the inclination of the disk.
However, estimation of this angle, BL, depends on the accurate estimation of i.

Both PA and i can be established from observations of the outer, undisturbed
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region of the disk. If these outer orbits are not nearly circular, both angles will be
uncertain.

Just beyond cororation in our models, the perturbed stellar surface density
giving rise to the oval destortion is 10% of the local axisymmetrie disk density.
While some 2& forcing is required in order to produce spiral arms, rotation of the
bar over the numerical grid in these models causes the beam scheme to
overestimate the required forcing. Thus, the oval distortion in our models is an
upper limit on the true magnitude of this component. In the spiral arm region of
the disk )the expected velocity perturbations are substantial, amounting to~20
km/sec. However, these would be reduced in magnitude at large radii. Thus, we
would expect to see a systematic change in the position angle of the kinematic
line of nodes with increasing radius. Such an effect, for instance, is observed in
NGC 4731 (Paper I) but is not observed for NCG 3992. This offers further support
to our contention that,'when present, the magnitude of the oval distortion is
overestimated in our models)and that both the inclination angle and line of nodes
in NGC 3992 are known to at least  5°.

Thus jwhile we use the observed rotation curve to bound our model

parameters, it is absolutely eruecial that each promising model be projected into

the same orientation as the observed galaxy and then be convolved through a

synthetic function, which matches the resbonse pattern of the VLA antenna
configuration-i.e., the model must be "observed" as if it were the galaxy. Only
then can the model radial velocities and angle-averaged rotation curve be
compared, meaningfully, with those of the galaxy. We have adhered to this
procedure in the present work.

In the remainder of this paper, we confine our attention to five models,
containing different mass components. None, are entirely "successful", but each

is the best of its class that we have been able to construct in our attempts to
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simulate the gas flow in NGC3992. Characteristics of the various components of
these models are summarized in Tables 2 and 3. We use the following notation:

C = asymptotic circular velocity of n=0 Toomre Disk in kms'l,

b = shape parameter of disk in kpe,

Mpr = mass of GMD in solar masses,

a¢ = semi-major axis of triaxial bar, assumed oriented in the disk plane, in

kpe

by = semi-minor axis of triaxial bar in the disk plane, in kpe,

ey = semi-minor axis of triaxial bar perpendicular to the disk plane, in kpe,

¢ = angle in degrees between major axis of disk isophotes and those of the

bar,

M = mass of triaxial bar in solar masses,

3 02 = dimensionless amplitude of the 1=2 oval distortion,

ﬁ = length scale in kpe, characterizing the 1=2 oval distortion,

My = halo mass interior to r = 14.9 kpe in solar masses,

My = total mass of all components interior to r = 14.9 kpe in solar masses,

r.. = radius at which bar would co-rotate with the undisturbed axisymmetric

er
model in kpe.

Vor = disk circular velocity at Top in kms'1 (vcr ='ﬂ‘p l'cr)’

Ti = radius of Inner Lindblad Resonance in kpe, and

r, = radius of Outer Lindblad Resonance in kpe.

o

In the next section, we present a further discussion of our modeling
procedures, along with a detailed comparison of these models with the

observations.



26.

IV. THE MODELS

A number of structural and kinematical phenomena, observed in the HI data
of NGC 3992, were compared with the models in order assess the quality of their
fits. In the model structure, we examined the extent, contrast and winding of the
spiral arms, as well as the magnitudes of the central depressions in the gas. Also,
we have insisted that a satisfactory model generate several kinematical
phenomena. First, the angle-averaged model rotation curves must match the
observed curve. Additionally, the magnitudes of the streaming motions across the
model spiral arms should agree with the observed velocity fields. Finally, there is
a marked shift in position of the veloeity contours across the central, HI hole in
NGC 3992 (See Paper I). This feature, the kinematie offset, also must be
reproduced by a successful model. From a dynamical standpoint, we were
concerned with the existence and/or location of critical resonances, which would
effect the stability of the stellar bar and the location of the spiral arms. In the
following paragraphs we discuss these properties and in Table 3 we summarize
critical characteristics.

From Figure 1 it is clear that the observed arm-interarm HI contrast (beam-
smoothed) can not be too high. In the outer regions, where our observations allow
measurements to be made, we find a ratio (maximum:minimum) of 1.2 - 1.5. The
arms, as characterized by their optical properties, are thin, tightly wound, and
extend through the better part of one complete turn. Also, the optical arms are
more complicated than simple bi-symmetry will allow. A further significant
feature in the gas is the central depression in the HI. As we argued in paper I, this
depression is very unlikely to be "filled" with molecular hydrogen. The upper limit
on amount of Hy inferred from CO observations is not sufficient to make up the

deficit (Paper I).
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It might be argued that the central hole need not be caused by dynamical
effects associated with the bar. A burst of massive star formation, or some other
disruptive event, in the nucleus of NGC 3992 in the relatively recent past might
have depleted the gas in that region.

However, we consider such an explanation to be unlikely for several
reasons. First of all, the rate of star formation near the nucleus of a spiral galaxy
can be estimated from the ratios of its IRAS Point-Source Catalog fluxes. The
ratio of 100 M flux to 60 M flux is an inverse measure of the proportion of hot
dust present; in galaxies where other indicators point to a high rate of star
formations, this ratio is generally less than three. One of us (R.B.) recently
evaluated this ratio for a sample of 50 spiral galaxies selected to be optically
large, but unbiased as to type. For NGC 3992 the flux ratio is 11.1, which is the
largest value in the entire survey by over 40%. In other words, the present rate of
star formation in the central 90" of NGC 3992 is extraordinarily low, which
strongly implies both a lack of molecular gas and that star formation cannot be
responsible for the gas depletion. A dynamical explanation for the depletion also
is suggested by the symmetry of the hole , as well as the fact that similar holes
are éresent in two other strongly barred galaxies that we have observed (NGC1073
and NGC 1300). Moreover, in each case, the radius of the hole is very nearly
equai to that of the optical bar, and we see no indication of disruptive phenomena
at optical and infrared wavelengths. Therefore, we regard the central hole as a
feature which must emerge from a "successful" dynamical model.

Figure 7 is a superposition upon an optical photograph of the galaxy the
observed radial velocities minus those of a strictly circular velocity field, which
matches the angle-averaged rotation field of NGC 3992 (Model 1). Systematic
trends are apparent, which tell us about non-circular, streaming motions

associated with the bar and with the spiral structure. Near the line of nodes,
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azimuthal terms dominate, while, near the minor axis, only the radial terms can
be see.n in the velocity perturbations. As the magnitude and sense of these non-
circular motions are dynamically related to the non-axisymmetric component of
the potential, they represent important constraints on any model. Finally, as we
noted in Paper I, the isopleths of constant velocity do not pass smoothly through
the center of the galaxy. Such differential effects (kinematic offsets) would be
expected from oval motion in and around the bar.
The non-axisymmetric mass distribution of the bar would be expected to
play a leading role in generating these observed, dynamical effects in NGC 3992.
However, limitations can be placed on the bar mass, since the total mass in the
center of the galaxy cannot be too large. If it is excessive, the rotational velocity
in the inner region will rise too rapidly. An inner maximum in the rotation law
could be generated, which would fall off before rising again at larger radii. In this
event, there probably would be two Inner Lindblad Resonances and the gas would
be far out of phase with the stellar bar (Sanders and Huntley, 1976). However, if
such an inner maximum exists in NGC 3992, it must lie within 1', for it is not
observed. Also, for the bar to be viable, certain limits can be placed on
resonances. For example, co-rotation almost certainly must occur beyond the
"radius™ of the bar - otherwise, it is difficult to understand how the bar could be
stable (Contopoulos, Private Communiecation).
Our modeling strategy is summarized in the following steps.

1. Disk and halo components were selected which gave circular velocities

roughly in agreement with the observed, HI rotation curve.
2. A strong oval distortion was added, having a pattern speed such that r,. was

somewhat > a;. Then, a series of models was run in which the distortion was

reduced until the ™holes", adjacent to the gas bars, were of approximately the

size and contrast of the observed central HI depression.
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3. A triaxial bar was included, oriented parallel to and co-rotating with the oval
distortion, and the disk and halo parameters were modified to correct for the
bar mass.

4. The oval distortion parameters then were corrected until the optimal gas
response was generated, both in the bar region and in the outer portions of
the disk.

5. Finally, the bar mass was varied until the kinematic offset approached the
observed value as closely as possible. This step is complicated, considerably,
by the fact that several parameters must be changed simultaneously as the
bar mass is varied.

Bearing in mind the various constraints imposed by the observations, we return to

the models of Table 2.

a) Model 1

This model has an axisymmetric mass distribution, and may be used as a
convenient standard against which the barred models may be gauged. The bar is
replaced by an inhomogeneous, spherical mass distribution of radius a, having the
same mass and extent as the triaxial bars of models 2 and 3. Figures 8 and 9 show
the projected angle-averaged rotation curve and radial veloeity field for Model
1. The model does not (and cannot) produce spiral arms or kinematic offsets
across the "ar" region. The fact that the beam smoothed velocity residuals of
Figure 7 are relatively small over most of the disk shows that any spiral structure
in the gas is not well resolved and is relatively weak. This econadusion is consistent

with the HI surface density maps (Figures 3a and 3b of Paper I).

b) Models 2 and 3
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We regard these two models of the gas response in NGC3992 as our most
successful ones. They are identical, excepting that Model 3 has a prolate bar,
whereas the bar of Model 2 is a flattened figure. As mentioned previously, we
find that flattening a bar has only a minor effeet upon the gas response. Both
models have identical halos, with My(R) ~~ Mp, and both have identical oval
distortions. Moreover, the pattern speeds in both models are very nearly the
same.

In these models, the trailing, spiral arms have a surface density > 1.2 times
that of the background gas for > 210° in azimuth. Their average piteh angles, i ~
259, are considerably greater than 10°, the approximate, average pitch angle of
the tightly-wound, optical, spiral arms. Figures 10-13 show the results of Model
3. The corresponding figures for Model 2 are very similar. Both models generate
satisfactory gas depressions and kinematic offsets in their bar regions. (In Model
2, the kinematic offset is slightly greater, and the hole somewhat smaller, than in
Model 3). In contrast with Model 1, the velocity residuals in these models (as well
as in many other of our barred models) have systematic patterns which coincide
with the model arms. Notwithstanding, the departures from circular flow are
relatively small (excepting in the bar region), meaning that the overall spiral
structure in the gas is weak. In order to generate the desired, overall gas
response, it was necessary to include a triaxial bar and oval distortion in both
models. In the bar regions of these models, non-circular motions of ~~ 200 km/sec
developed )whereas in the arms the corresponding speeds were ~ 35 km/see. In
both models the kinematics of the bar regions agree well with the observations. It

is in the arm regions that the models are less successful.

¢) Model 4
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Model 4 is identical with Model 3, excepting that it lacks the oval distortion
component. Although the spiral arms in this model are more tightly wound ( i~
20°) than those of Models 2 and 3, both the contrast and extent of the arms are
less than in those models. Excepting in the bar region, the velocity residuals are
not large and they follow the systematic pattern as those of Model 3. The
greatest defect of Model 4 is that its kinematic offset is only ~~ 60% of the
observed amount. In general, when an oval distortion is added to a model, the
kinematie offset is increased and the arms are strengthened. (An undesirable
characteristic that usually accompanies an oval distortion is the tendency to form
a gas bar.) We could not increase the mass of the bar in order to produce the
observed kinematic offset without generating an unacceptable rotation curve. In

contrast, an oval distortion does not modify the angle averaged rotation curve.

d) Model 5

The importance of including a halo component in models of NGC3992 is
illustrated by Model 5, which consists of only a disk and a prolate bar. In order to
produce something resembling the observed gas response, the bar mass had to be
increased to ~~ 38% of the disk mass, the disk scale length increased and the
pattern speed reduced. The resulting contrast and extent of the spiral arms, as
well as the kinematic offset, in this model are less than those of Models 2 and 3;
however, these characteristics would be increased if an oval distortion were
included. The average pitch angle of the arms is 18°, a value closer to the pitch
angles of the optical arms. The great shortcoming of Model 5 is that, with such a
large bar mass, its angle-averaged rotation curve has a central maximum at r~1'

(within the bar region). As mentioned previously, we did not observe this feature,
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and would have seen it if it were present. When a halo is included in the model,
not only can the masses of both the bar and disk be reduced, but My,/Mpr can be
reduced as well. In some of our models (e.g., Models 2 and 3), the spiral arms
extend smoothly from co-rotation to well beyond the Outer Lindblad Resonance.
Therefore, the latter resonance is not an impenetrable barrier‘to the arms, as has
often been assumed from linear theory (Rohifs, 1977). Important characteristics
of these models are summarized in Table 3.

In the models described above, the dynamical influences of the central bulge
were absorbed in the other axisymmetric components. This was done because the
rétation curve appears to rise slowly, and a massive centrally condensed bulge
would result in an inner maximum in the rotation curve, which would have to lie
well withinthe HI hole. However, such a bulge could be important because it
might give rise to Inner Lindblad Resonances. Therefore, we have integrated a
series of models which includes bulges that are consistent with the photometry.
Qualitatively speaking, the effects of the bulges in all of these models are similar;
relative to Models 1 - 5 above, they exhibit greater departures from circular
motions in their innermost regions, which result in stronger and more strongly
offset shock fronts near their centers. Velocity vectors in the rotating bar frame
are shown in Figure 15b for an extreme model with a massive bulge, assumed to
have an M/L ratio equal to that of the bar. The adapted radial bulk density
distribution in the bulge is Gaussian, withG=0.58 kpe, and the bulge mass = 0.98
M. Other characteristics of this model are identical with those of Model 3,
excepting that My=0.75Mpp. Shown, also, as Figure 15a are the corresponding
velocity vectors for Model 3. From a comparison of these diagrams in Figure 15,
it is apparent that the dynamical signature of the bulge componant is confined to
a region within the hole and , therefore, our HI observations can be represented

satisfactorally by models in which the bulge is absorbed in the disk and halo
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parameters. Thus, while a central bulge, unquestionally exists in NGC 3992, in
view of the number of parameters that clearly are necessary in modeling the gas
response, we have not included separate bulge components in most of our
calculations.

There are many examples of barred galaxies with slowly rising rotation laws,
e.g. NGC 4731 (Paper I), NGC 3359 (Cheriguene, 1975); NGC 3198 (Bosma, 1981);
NGC 3054 (Rubin et al. 1982); M83 (de Vaucouleurs, Pence and Davoust, 1983).
Also, Teuben and Sanders (1985) noted that there is an abrupt change between
slowly rotating, dynamically hot bars and rapidly rotating, dynamically cold bars
that corresponds to the disappearance of the ILR from the bar region. The lack of
offset dust lanes would indicate that the bar in NGC 3992 is of the latter class,and
that a resonance is not required for suitable models. Finally, we note that the
three dimensional simulation of Miller and Smith (1979) formed bars that did not
exhibit ILR's.

In order to converge upon these models, we carried out a large number of
numerical experiments, most of which resulted in models which clearly are
incompatible with the observations. For example, we established that the bar
cannot reasonably be represented by only a (28) oval distortion, irrespective of
what axisymmetric components are present. All models of this type, having co-
rotation outside of the observed bar (rcr> a; = 4.28 kpe), resulted in an S-shaped
gas distribution, with the gas bar oriented roughly parallel to the direction of the
distortion. The gas could be swept out of the bar region only the pattern speeds
were unacceptably large (eg., as rg 0). When triaxial bars were included in the
models, we found that the optimal pattern speeds placed rop SOMewhat beyond the
end of the bar. |

From these numerical experiments, we venture the following general

remarks about the sensitivity of the models to changes in various parameters.
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The gas responds most sensitively to changes in the pattern speed. For
example, if the.o-p's of Models 2 and 3 are increased by 10% the spiral arms
break up into elumps; if the Ll p's is in the models are decreased by 10%, the
spiral arms become too weak and the central holes nearly disappear. These
results confirm the conclusion from stellar dynamics that corotation should

lie beyond the end of the bar.

Having specifiedﬂ-p, the models are least sensitive to the flattening of a bar
of fixed mass and radius. This result is in agreement with the conclusions of

Sanders and Tubbs (1980).

The gas response is not particularly sensitive to changes in the disk and halo
parameters, provided that they have been adjusted to produce a distribution
of circular velocities that approximates to the observed HI rotation curve.
Notwithstanding, we were unable to match the observations, even
approximately, unless the halo masses in the models satisfied the condition,
0.7 Mpp < MH(R)< 1.4 Mpp. In view of comments b and ¢ above, it is clear
that we cannot guarantee the uniqueness of a model which fits the available

observational data.

All of our bisymmetric models of this galaxy suffer the major shortcoming

that the model arms do not coincide with the observed optical arms. It seems

unreasonable to argue that they should not, for, as we have noted, in the outer

portions of the disk (where the resolution allows) the optical and HI arms do

coincide. The veloeity residuals in Figure 12 have a distinctly systematic pattern,

which coincides with the model arms, and is found in all of our models. The

resolution of the difficulty may be related to the lack of 28 symmetry in the outer

optical arms. (One of the arms is bifurcated into two distinet and prominent
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sections — thus, the galaxy displays ~ 38 symmetry in its outer regions.)
Contopoulos (1985) notes that the outer 4/1 resonance may have some observable
consequences in real galaxies. We have examined the optical galaxy for any
pecularities to determine whether these coincide with the t 4/1, and t 2/1
resonances in our models. The bifurcation of one of the arms mentioned above °

was of primary interest, as was the region to the NW7 of the nucleus, where the

arm showed a break or kink. In

8(the east arm, rsky=1!46; PAsky=75°)

T(rgyy,=1146; PA =-42°)

models 2 and 3, co-rotation is at r = 4.3 kpe, the Outer Lindblad Resonance (-2/1),
lies at 8.9 kpe and the inner and outer (1’)4/1 resonances at 0.7 kpe and 6.6 kpe
respectively. In NGC 3992, the bifurcation region is ~ 7 kpe from the center and
the NW "kink" is ~11 kpe from the center.

The similarity in radii between the -4/1 resonance and the bifurcation region
is intriguing. The similarity suggests that the bifurcation may be caused by the
-4/1 resonance. However, it is not clear this interpretation is reasonable, since
higher-order, even-numbered resonances should affect spiral arms on both sides of
the galaxy in the same manner. If this bifureation is to be physically associated
with the -4/1 resonance, then "ocal" phenomena (e.g. eloud-cloud interactions or
irregularities in the gas distribution) may have to be invoked to account for the
lack of symmetry.

The NW kink lies well beyond the Outer Lindblad Resonance and probably is
not associated with any of the resonances considered here. While the dust lanes in
the bar region lie just beyond the inner 4/1 resonance, these lanes probably result

from shock fronts along the bar at the resonance (Roberts, 1979).
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By including a spiral potential, with a pitch angle of 10°, in Models 2 and 3
we have succeeded in generating model arms that are as tightly wound as the
optical arms. However, then, the gas response in the bar region does not fit the
observations - the hole disappears altogether and the kinematic offset is reduced
greatly. We do not understand these effects fully.

If the fractions of bar to disk in both mass and luminosity are known, we can
compute (M/L) for the bar, in terms of that for the disk. (In making this estimate,
we ignore the small difference between our value for the disk radius and that
adopted by the Elmegreens.) Elmegreen and Elmegreen (1985) have attempted to
determine the fractional lumnosity of the bar, relative to the disk, in their I-band
surface photometry. They define the bar as the sum of the m=2 .and m=4 modes in
a Fourier decomposition. Their result is that the ratio of the bar to disk light is,
for the disk inside R25= 3.8', 3.79%; and within Pbar? 23%. Using the values for
the relative bar mass and luminosity given earlier in this section, we compute
(M/L)ygp = 6.9 (M/L) 4iq)» for the disk as a whole, and (M/L)y,gp = 6.6 (M/L) ;g for
the region within the bar radius. The accordance between these two estimates is
rather heartening. It implies that the mass to light ratio for the disk component
in the bar zone does not differ from that in the outer disk. However, the factor of
seven enhancement of (M/L)bar over that of the disk is surprisingly high, but may
be in error, in view of the uncertainities in the luminosities which we discuss
below, and in the masses summarized in Table 2.

We believe that these numbers should not be interpreted too literally
because of complications, primarily, in the observed isophotes. First, the physical
significance of the m=4 contribution is problematie, especially given the presence
of the central bulge which is not aligned with the bar axis in NGC 3992.
Elmegreen and Elmegreen's Figure 11 shows that the m=4 mode is prominent in

the central parts of this galaxy. In our own attempt to disentangle the bulge from



37.

the bar, including a rough correction f?r dust absorption as deseribed previously,
we find total luminosities of the bar and bulge of 1.00 and 0.91, respectively, in
arbitrary units normalized to the bar luminosity. Thus, the bulge is a major
contribution to the central luminosity. Secondly, the absence of any correction
for internal obscuration by Elmegreen and Elmegreen may strongly affect their
estimate of the bar luminosity (again, See Sandage and Tammann, 1980). Finally,
the radial brightness profile is not a simple exponential, but rather a classic
example of Freeman's (1970) Type I galaxies, where the intensities at
intermediate radi drop well below the inward extrapolation of the exponentials
which best fit the outer disks. This may be seen from the azimuthally averaged,
blue profile of the galaxy in Figure 2 of Elmegreen and Elmegreen. It is also quite
pronounced in the major-axis tracing fro-m their I data used in this paper. The
brightness profile flattens abruptly as one crosses the innermost spiral arm, giving
a plateau-like inner disk region similar to the one observed in NGC 7479 by
Blackman (1983). This behavior makes it difficult to measure accurately, and
model in a simple fashion, the integrated disk contribution.

Therefore, we believe there are effects which systematically reduce the
ratios Ly,. /Lgisx as given by Elmegreen and Elmegreen. Furthermore, as
discussed below, our value for the bar mass may be too high. Hence, the
discrepancy between the luminosity and mass ratio may be more apparent than
real.

Unfortunately, the mass to light ratios for the bar and disk in solar units
cannot be calculated from the available data, since there is no absolute
calibration for the I-band photometry. The intergrated (M/L) ratio for NGC 3992
in the blue was given as 9.5 by Gottesman et al. (1984). That result refers to a
diameter of 8.4', slightly larger than that used in the discussion here.

Before concluding this section, we mention a theoretical dificulty associated
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with the presence of strong (i.e., sufficiently enlongated and massive) bars in
galaxies. Dr. G. Contopoulos pointed out to us that, given the photometric
constraints on its shape, the bar in NGC 3992 cannot be too massive. That is, for
each triaxial figure consistent with the observations, if M, exceeds a critical
value, then the two-dimensional particle response will be stochastic. For such
large M}, quasi-periodic, two-dimensional orbits will not exist in the bar region.
Therefore, if a massive bar is also highly flattened, the stellar component will
respond in a manner inconsistent with the applied potential. That is, no self-
consistent stellar bar will be possible. Some aspects of this problem will be
considered in a joint publication with Dr. Contopoulos.

But if the bar is not too highly-flattened, then two alternatives are
possible. First, three-dimensional, periodic particle orbits may be found. Second,
and more likely, three-dimensional particle orbits may exist which, while not
strictly periodie, are still preferentially found in certain volumes of configuration
space which co-rotate with the bar. Self-consistent, numerical experiments
suggest that such restricted orbits may account for the barlike modes of many

three-dimensional stellar systems (Miller and Smith, 1979).
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V. CONCLUSIONS

We have calculated an extensive network of hydrodynamical models of NGC
3992, in an effort to match our observations of the HI distribution and kinematies
from the VLA. The essential assumption of the method is that the spiral structure
in the gas is a response to the imposed potentials of the galaxy's bar, disk, and
halo. Below we summarize the success and shortcomings of our program.

The behavior of the gas in these models is governed essentially by four
parameters: the bar's pattern speed, the amplitude and length scale of the oval
distortion, and the ratio of bar to disk mass. We experimented with a wide range
of these parameters, as well as a few others not fixed by observational data which
proved to be of lesser importance. The thorough investigation of the response in
the space of these four parameters is complex and time-consuming, because of the
problem's deep non-linearity; the result of combining moderate changes in two of
the parameters often is greatly different from the sum of the responses to each
change individually. Thus, it was necessary to sample a wide grid in 4-parameter
space, rather than being able to infer results from an examination of the "axes" of
that space. A further but, we feel, essential complication was the evaluation of
each model by global eriteria, rather than by looking or the best matches to single
features of the observations. This insistence that a "good" model reproduce as
well as possible all of the observed properties forced us to respect the internal
self-consistency of the physical galaxy NGC 3992. We computed many models
that were adequate representations of generic "typical" barred spirak) but which
lacked essential features of the gas reéponse in NGC 3992.

In conducting this evaluation of a model's global properties, the analysis

breaks down naturally into separate considerations of the gas in the bar region and
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in the outer disk. Our best models are much more satisfactory in the former, and
indeed we have no really satisfactory mod'els in the disk/arm region. Thus, let us
first summarize what we have learned about the bar region from this study of
NGC 3992.

We have found that the gas response is extremely sensitive to the angular
pattern speed .Q-l,of the tﬁmbling bar. In fact,.Q.Pis in one sense the controlling
variable of the gas structure; outside a narrow range of values, it is impossible to
elicit a spiral response in the gas with any conbination of the other parameters.
The optimum value of Q-rvaries by only a modest amount over physically extreme
ranges of the other parameters. In a particular neighborhood of parameter space,
including that of the best models, the variation allowed in .Q-P is no more than t
10%.

The particular value of "O'P that is indicated by these models is one that puts
co-rotation barely beyond the end of the bar (see Table 2). Furthermore, our best
models do not contain an ILR. These results are interesting, in light of the
current theoretical understanding of galactic bars as summarized, for example, by
Teuben and Sanders (1985). These authors propose four "dynamical rules for
barred spirals", which we paraphrase: (1) bars tumble in the sense of galactic
rotation; (2) co-rotation must lie outside the bar distortion; (3) strong rapidly
tumbling bars are cold, and, conversely, strong slowly tumbling bars are hot; and
(4) the magnitude of the bar distortion is limited to axial ratios of about 1/5, due
to the onset of stochasticity well inside co-rotation. Rule 1 in this list is one of
our assumptions, and we note in passing that rule 4 is verified for NGC 3992 by
the photometry; indeed, NGC 3992 satisfies the criterion b/a < 1/3, for which
Teuben and Sanders find little stochasticity. The bar of NGC 3992 appears to
satisfy criterion 2, but just barely. In this regard it resembles the results of some

N-body studies of purely stellar bar dynamies (e.g.,Sellwood 1980). Therefore, we
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believe that the bar of NGC 3992 is in the "rapidly tumbling” category of rule 3.
Our suspicion is confirmed by a careful examination of the distinetion drawn by
Teuben and Sanders between fast and slow bars: it is a phase transition marked by
the disappearance of the inner Lindblad resonances at higher.ﬂ-r . Therefore, the
absence of an ILR in our models is an additional indication that the bar of NGC
3992 has a relatively fast pattern speed and is, presumably, formed from
dynamically cold stellar orbits. Perhaps the notion that barred spirals possess
ILR's reflects the desire to reproduce the "archetypal” straight, offset shocks
(e.g., Sanders and Tubbs 1980) which NGC 3992 does not have. As modeling of
more barred spirals becomes available, it will be of considerable interest to see
whether there is observational confirmation of this dichotomy in bar speeds, which
presumably is correlated with Hubble type.

The mass of the bar, relative to the disk mass also is reasonably well
determined by these models. This parameter plays the primary role in the
dynamical expulsion of gas from the center of the galaxy, and is an important
partner to the oval distortion in producing the central, kinematic offset, the most
dramatic evidence of non-circular motions in the galaxy's observed kinematies and
the spiral arms. These firm data on the gas response close to the bar cannot be
matched by models for which Mb< 0-i¥ Mm” and the most satisfactory response
occurs when M EO-RLMﬁ_ On observational g"rounds,M h::annot exceed«-oaM& since
the rotation curve does not have a central maximum at r‘~ll . As discusssed in
Section IV, this bar mass is rather near the stellar dynamical limit, beyond which
stochasticity may begin to cause stability problems for the bar. This finding
serves as a stimulus for further study of three-dimentional orbits in strongly
barred potentials. While the models may be consistent in a dynamical sense, there
may remain a serious problem with the M/L of the bar. (See Section IV).

In addition to the triaxial component, the galaxy must possess a "massless
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bar" equivalent to our(ZB) oval distortion of the unperturbed disk surface density.
This eomponent is necessary in order to excite a significant reponse in the outer
disk. In other words, it is necessary that some entity extend a significant non-
axisymmetric term in the potential beyond the limits of the observed stellar bar.
It is worth noting that the same conclusion was reached by Ball (1984, 1987) for
the SB galaxy NGC 3359, for which (unlike the present case) the modeling
matched both the bar region and the outer spiral aim response, but only with the
inclusion of an oval distortion.

We have had only limited success in modeling the spiral response in the outer
disk of NGC 3992. The initial impression of regular spiral structure in this object
is due to the length, narrowness, and near-constant, small pitch angle of the
optical arms. What the eye is less quick to note is the lack of 2& symmetry and
the bifurcations, which are beyond the scope of our approach. Given this
limitation, we have required that the models have arms as long, narrow, and
tightly wound as possible. In no case have we been able to generate arms as
extreme in these characteristics as are the optical arms of NGC 3992.

Although we were unable to generate the proper spiral structure as judged,
especially, from the higher-resolution optical arm structure, we did manage to
produce spiral density waves in the gas with associated velocity perturbations of
the same amplitude as those seen in the outermost part of the HI disk. We
emphasize that this occurs only over a very small range of_(lrvalues-a range which
agrees also with theoretical expectations. For other values of .Q.P ‘the gas response
is utterly unsatisfactorly. Thus, if the bar is in any way instrumental in exciting a
spiral response in the gas disk of NGC 3992, it must have a pattern speed very
close to our value.

We find that NGC 3992 must be surrounded by a halo which contains roughly
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one disk mass interior to the disk radius. This result of our modeling reinforces
that same conclusion, arrived at on strictly observational grounds (Paper I). The
central bulge component, while unquestionably present, need not be included
explicitly in modeling the HI response of the observed gas.

Assuming that only periodic, bisymmetric foreing terms are present, Models
2 and 3 represent our most successful attempts to simulate the gas flows in NGC
3992. Since the model spiral arms in the outer disk do not coincide with the
tightly wound, star formation arms actually observed in NGC 3992, either the
dynamics of our models are seriously incomplete, or the present configuration of
these arms is due to other causes, such as an unusual star formation history. That
is, while the large scale distribution of diffuse HI clouds must reflect the global
gas-dynamical responses of the disk, the distribution of HII clouds may be
governed by several other processes. In particular, local (stochastic) interactions
may govern the appearance of the optical arms. Therefore, the distribution of HII
clouds also may depend upon the mean life times of these clouds, as well as on
their birthsite distributions (Huntley and Gerola,1981). An additional difference
between the distributions of HI and HII clouds is their local mass densities., Even
though the total mass of gas in NGC 3992 is small, the dynamical effect of
gaseous self-gravity depends to some degree on the local gas density. If the local
density of HII regions produces a sufficiently narrow and deep potential well, the
local self-gravity may dominate over the forcing of the oval distortion. In such a
case, narrow spiral arms may occur in the HI distribution. These narrow arms
could be tightly wound if the mass of gas is not very large compared with the mass
of stars. Thus, while the HI distribution should reflect the dynamics of the
underlying stellar distribution, the HII distribution, which defines the optical arms,

may result from forces in addition to the background gravitational field.
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Table 1

Summary of the Observed Properties of NGC 39923

Morphological Type

Observed V. (heliocentric)

sys
Synthesized Resolution
Adopted Distance

Scale

Photometric Diameter Dyg
Diameter of HI Disk
Dimension of Optical Bar
Position Angle, Line of Nodes
Inclination Angle

Maximum Rotation Velocity
Radius of Maximum Velocity
Mass Within Hydrogen Disk
Corrected Blue Luminosity
Atomic Hydrogen Mass

My /M (Solar Units)

M/Lg (Solar Units)

Myy/Lg (Solar Units)

SBT4
1045.8+0.6 kms™!
26.1 x 20.0"
14.2 Mpe.

1”= 4.13 kpe

/

7°.8
/
8 .4
/ /
1.7x0.5
9] P
-111.5+0.6
2 N
53.4+0.9
273 kms'1
/
31
22.8 x 1019 Mo
2.4 x 1010 1,0
0.38 x 1010 Mo
0.017
9.5

0.16

3 These values are taken from Paper I.
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Table 2

Model Parameters

Model 1 2 3 4 5
C 247.8 247.8 247.8 . 247.8 289.1
b 3.72 3.72 3.72 3.72 6.51
MpT 9.751x 1010 9.751x 1010 9751 x 1010  9.751x 1010  9.751 x 1010
o _ 4.4 4.3 4.6 5.3
8 4.28 4.28 4.28 4.28 4.28
ee/ay 1.000 0.334 1.000 1.000 1.000
cy/by 1.000 . 0.617 0.356 0.356 0.356
Mp/Mpr 0.255 0.255 0.255 0.341 0.381

02 L 1.8474 1.847% L L

L 2.794 2.794 L L

My/Mpr 0.937 0.937 0.937 0.835 _
My 2.138 2.138 2.138 2.122 1.374
4

with this choice for (9 and , the maximum perturbed surface density contrast

is 34 % of the unperturbed surface density at r = 1.86 kpec.
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Table 3

Important Model Characteristics

Model 19 2 3 4 .5 Observed
Tor 4.4 4.3 4.6 5.3

er 236.5 222.5 247. 5252.0

l‘i 0.5 0.7

ry 8.8 9.3 8.8 11.9

radial extent

of arms (kpe) 11.9 11.9 8.8 9.5 12.4
angular extent

of arms (%) 212 220 175 185 200
arm/interarm

density ratio 1.4 1.4 1.3 1.2 1.3
size of central

hole (kpe) 4.1x2.3 4.8x2.3 4.1x2.3 4.6x1 4.0x2.4
interarm/hole

density ratio 3.6 3.9 3.0 3.3 3.0

kigenatic offset at
10°kms™" (kpe) 1.4 1.4 0.9 1.2 1.6

S Model 1 was a purely circular model.
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APPENDIX

In this Appendix we summarize work by two of us (J.R. Ball and J.H. Hunter) which
has been used to compute the gravitational forces of the inhomogenous, triaxial bars. We
wish to find the gravitational force of a homoeoid: a shell of material of constant
density, bounded by two concentric, similar, triaxial ellipsoids. Let the semiaxes of the
inner ellipsoid be (a, b, ¢) where a b ¢ in the directions of the Cartesian coordinates (x,
y, z) respectively. The outer ellipsoid is considered to have greatest semiaxes (a + da),
and axial ratios equal to those of the inner figure. The foundation of our approach is laid
out by MacMillian (1958). In his Section 11, he demonstrates that the force on a particle
in the interior of this homoeoid is zero. We shall consider, therefore, the solution at a
point (x, y, z) exterior to the homoeoid. We use the following two additional results from
MacMillian. First the potential of the solid, homogenous body, which is bounded by our

inner ellipsoid, is

(= -

_ 2 2 2 : -
v =T ab ._.__X___ -, y
s [B-Z e o s, o

where .P is the mass density, and K is the largest root of the equation

“’2. 1 . 22_
—— = = . (A2)
(&%ek.) (%) c‘ﬁo\

The largest root of this equation is real and positive (MacMillian, p. 52). Second, in

taking partial derivatives of V ,, the terms containing partial derivatives of K vanish.

The incremental potential dV associated with our homoeoid is

dV = OV, 4, .

cmam——

a& (A3)
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After considerable simplication, this becomes

dv = -wGF beda { 3T iah,c) - (3%*+<) L s b,C)—(iyibz)T;( b;a,c)
- e . 2 T
(32 )L (c 5 4,b) + (2°b fylﬂl).L 3Wbe) + (Xetr 2%y Is @,cob)
g 2
| “Hy’?: +2% )Is(b,c;q fo’a.zI,‘(q be) +3 }zl-i,* (b;a,e)

. (A4)
+3 2% I%(c;a,k)},
where
(= - - . -
Il (l, M,h) - [k(lz'f$> /z(ml_rs) V"(hl-bS) yﬂ.ds) (Asa)
—_ (=, -3 - -
_Lz(-l,' ™, ) ':/ (1’:,:) A(;«“ﬁ) vz(h‘ﬂ) Y’d S,
K (A5b)
T tm., -—f“ 2 sV o, oy
3 oMe) = (2+S) “[mtes : Th
— i '% Y,
And _Lq_(lj‘ m),‘)_-:_— f(lz'f-‘) (Ml-fs) l(“1+5"/13“s-. (A5d)
K

The ten distinet integrals appearing in equation &) may be evaluated with the aid
of formulae in Section 3.13 of Gradshteyn and Ryzhik (1980, hereafter GR). However,

the formula for I3 (b, ¢; a) equation 3.135.1 in their enumeration contains a typographical

L 2-¥
error. This integral can be evaluated by making the change of variables @ = sin~ 5%9) +
22 Y. ats
with the auxiliary funetion p = (L:_"_z_) 2' The transformed integral can then be found in .
, at-e

Section 2.58 of GR, specifically using formulae 2.584.72 and 2.584.87.
With this correction, the integrals of equation (5) are specified as follows. We

introduce the notations

<= S-'_“:‘(A"— c‘) , (Aéa) g = (a*— g,")-; (A6b)

Kiei ;
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- _i
qz.f___ Uo'z_ o?) , (A6e) 33 = (az___ e?) , (A6d)
)w.'—;‘-’. (a,z-rK.) v") (A6e) ’Lz = (Ll_‘,&\'/zj (A6F)

and = (4 w)" (asg)

The solutions for the integrals depend on the assumption a>b>e¢, and that K> 0.

Then,

T, by = 29, F«,p),

(ATa)
I')- @ 6,8) = 2'9.33 [F(-(,l’)" E(-or)]
’ (ATH)
T,bjae)=2 - E «,p)- - -, -1
L98E@R-241 Funagh, e
L, 5,5 =-294 F, -1y -l
2 (G4, 313 4,p) +13 A J"s , (A7d)

_L Wbje) =29 9 3 (% -zc‘)Eu,‘,) 2,3 l—(.(),,)] (ATe)
- 29 ﬂ J\. »l\.-l 2_

/

T Lg,e0h)= x 2 -
L L6esh) Zﬂ,ﬁz‘jg z[(z},_&l_cz’ E(*,P) _ 52 ‘FL-()P)] (ATS)
24k 1
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J. (besa) = 239 3 [3 l"(-(,p)—(ld. b-c’) E p)] (A7g)

+24°4 S (brretazk),

Tt by = %)3 9 [(30, b-2¢ )F(.( ) =2, (24> c?')E(-gp)] (ATh)
+ (77/3‘) 63 3"“‘3 J"z.'Ll

Totbya0)= (7/3)923‘3 [23'2ca‘+c‘-uz) Earp)+4, (228 )

(A7')
E;a&l} £ p2b% Lt H(, 24 - -3L4e ]33 ; Wt l

and I(c,c,s) (%)‘j 57’[2,(¢+k-2c)E(-< P) ‘j F'c-< p)]

(A7j)

+ (2/3) [RP=3de 23t 4 (2w 3 )92y 40
42 1 3

where F(x, p) and E (=, p) are the incomplete elliptic integrals of the first and second
kinds, respectively. Table Al gives the specific formulae from GR used in evaluating
these integrals, except for I3 (b, c; a), which’as described above, had to be evaluated
somewhat more laboriously.
It is clear that we may rewrite the potential dV as
dV = WG)OACJA):PR«‘,,.,-QE(.‘“,,.K] (A8)
The functions P, Q, and R ean be obtained by combining equations (A4), (A7), and (A8).
Upon replacing the g's and h's by their definitions in terms of a, b, c,and and

manipulating the resulting expressions, we arrive at the general results:

P= +9,) (A9)

Q =0, (A10)
and R = 0 . (A11)
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The evaluation of R relies upon the definition of K. After utilizing equations (A6d)

and (A8), we obtain the very simple form for the potential:

dV = drGpbeda (et Fuop, (a12)

a result first proved by Chandrasekhar (1969) in an entirely different fashion.
In the oblate limit (a = b), we have p = 0, and the elliptic integral F («, p) becomes

simply o . If we further restrict ourselves to points in the equatorial plane of the

2 2_.2,.,2

spheroid, z = 0, then X,= r-a , where r“ = x° + y“, The potential becomes, from (A6a)

and (A12),

-{ } -
dV-.—_-Q-TG/an (I—ez)/"da. s"\"<d€/r'-)) (A13)

where we have defined e = (a2 - c2)1/ 2971, Equation (A13) is the familiar expression for

an oblate shell (Mestel, 1963). The prolate form, which is very similar to this, can be

recovered by interchanging e¢ and a, and using the identities @2 - 2)1/2 = j(e? - g2)1/2

and -i sin™! i8 = sinh™1g (MacMillian, 1958,p. 63).

An even further simplification ensues when the forces are computed. It arises
because the position (x, y, z) enters into (A12) only through the argument «(of the elliptic
integral. Therefore, by the definition of F (%, p) (e.g., GR, p. 904), the x component of
the force, for example becomes:

dF, = 47 Gpbe (ot Al O [ aaie %/
x poea=c “-a-fx [u--t") (1-p*t?) “ae |
0

(A14)
Recalling the definition of «in equation (A6a), we obtain

«JF’; = -211’@/: beda (1- sluzz).yzf/—jo"r«;"« \-‘/?A}vk,)-%ﬂ@ ) (A15)
P ¢
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d"; = -271'6}0 6040\-[(a.zfn.)(b"1-f<.)(c‘m)] ?_/; )

(A16a)
and similarly )
J F—; - 276/° beda [lat k) (b2) () ] %’5'
' y! (A16b)
and dlfy = -2WGplods [ @) () ]S gy

N

The only difficulty in computing the force, then, is the evaluation of K and of g,/xﬂ ,
etc. In the general case, K. is the greatest root of equation (A2), whose coefficients are
functions of (a, b, ¢) and (x, y, z) and can be found by application of standard techniques
(e.g., Abramowitz and Stegun, p. 17) at each point (x, y, z). Implicit differentation of the
cubic equation readily yields analytical expressions for the partial derivatives of X in
terms of (a, b, ¢), (x, y, 2), and }(' Therefore, after one has solved for f , evaluation of
the three force components is straightforward. Here we illustrate the procedure in the
simpler case, where the point of evaluation is in one of the planes of symmetry of the

homoeoid, say z = 0. In this case, K is the larger root of the quadratic

(X 2
_’_X____, + L = /.
(A2+x) (b>k) (A17)

Therefore,

K= {(11*71) - (‘_z‘,_bz)_f JE(XZ"'Y‘)' (‘.z*zjj'ﬂtzﬁ_xzbz_yzlz) /2 , (A18)
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2

Defining rd=x?+ y2 and 12 = a2 - bz, this can be rearranged to read:

K, = { r- (a.l+bz) r [T'q’-r 14-211('_1:_272 )J ‘i} /2, .

(A19)
Differentation with respect to x gives
K, 2 -
—_— = Q4 94,52/, 5,2\2
S gl'r(r‘-—l. )[r-rl -247(r-2y ) }x) (A20)
which simplifies to ,
_é_& - ( 2K 1-262
2% 2K +a2pirt ‘ (A21)
Similarly, . 2
o8 ( 2K +24 )
oy keeneri )] (A22)

The system of equations consisting of (Al16a), (A16b), (A19), (A21), and (A22) makes
the exact computation of the force due to a triaxial homoeoid very easy, therefore, in
one of its prineipal planes. Equations (A16) are equally valid outside of the planes of
symmetry. In that case X , being the root of a cubic equation, is more cumbersome to
write explicity. Once it has been found, however, equations for _é_lg , 2K , and é_!- can
be written which are similar in form to (A21) and (A22). Then, b;):iumg'lcal inteZ:ation
of equations (Al6a-Al6c), the forces due to mass density distribution }“(a) can be

calculated to a specified degree of accuracy, provided only that /0 (a) is constant on

triaxial surfaces.
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Table Al

Evaluation of Integrals from Gradshteyn and Ryzhik (1980)

Integral GR Formula
Il (8., b’ C) 3.131.1
I, (a; b, ¢) 3.133.1
Iy (b; a, c) 3.133.7
1, (c; &, b) 3.133.13
I, (a, b; ¢) 3.135.9
I3 (a, ¢; b) 3.135.5
I (a; b, ¢) 3.134.1
I (b a, ¢) 3.134.7

I (c; a, b) 3.134.13
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Figure Captions

Figure 1: Observed column density of HI in NGC 3992. The observed peak density
is 1.7 x 1021lem=2. The first contour is at 50% of this peak, with successive
contours at multiples of 10%. The photograph is reproduced from "A Revised
Shapley-Ames Catalog of Bright Galaxies" (Sandage and Tammann 1981) and

several reference stars are marked.

Figure 2: Contours of line-of-sight velocity (heliocentric) in NGC 3992. The
contour interval is 20 km s'l, and every fifth contour is labeled with its veloecity.
The photograph is from "A Revised Shapley-Ames Catalog of Bright Galaxies"
(Sandage and Tammann 1981). An irregular outline in the center of the figure is
the boundary of a zone where the_.;"ietected HI signal is very weak. Within this
area the data have beén spgtia‘lly smoothed to improve the sensitivity. The
crosses mark the positions of reference stars. The half-power beam is shown,

along with equatorial coordinates for epoch 1950.0.

Figure 3: Contour representation of the smoothed I passband image of NGC 3992
(Elmegreen 1981). The first contour is at 10% of the peak observed brightness,
with successive contours at multiples of 10%. Reference positions are marked by

Ccrosses.

Figure 4: Contour representation of the I passband image of NGC 3992 after

removal of a central bulge component. Contour levels are at 10% of the peak.

Figure 5: Major-axis brightness profile of I passband image after removal of a

central bulge component. Brightness units are arbitrary.
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Figure 6: Dependence of the angle-averaged rotation-curve and velocity field on
the angle between the bar and the line-of-modes, . The dependence is shown for
Model 3 of Section 4, with = 0° and 90°. The velocity field contours are plotted

at 20km/sec intervals.

Figure 7: Observed radial velocities minus those of a strictly circular velocity
field matehing the angle-averaged rotation field of NGC 3992. The photograph is
reproduced from "A Revised Shapley-Ames Catalog of Bright Galaxies" (Sandage
and Tammann 1981). Reference positions are marked by crosses. Contours are

numbered in units of 5 km/sec.

Figure 8: Projected angle-averaged rotation curve for Model 1; axisymmetric
mass distribution. The observed angle-averaged rotation curve is indicated by

crosses and some typical error bars are indicated.

Figure 9: Radial velocity field for Model 1; axisymmetric mass distribution.

Contours are plotted every 40 km/sec.

Figure 10: Radial velocity field for Model 3; prolate bar model. Contours are

plotted every 40 km/sec.

Figure 11: Projected angle-averaged rotation curve for Model 3; prolate bar
model. The observed angle-averaged rotation curve is indicated by crosses and
some typical error bars are indicated. The positions of co-rotation (CR) and the
Outer Lindblad Resonance (OLR) are indicated. No Inner Lindblad Resonances

exist.
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Figure 12: Observed radial velocity field minus those of Model 3; prolate bar

model. Contours are labeled in units of 5 km/sec.

Figure 13: Model 3, prolate bar model, density contours. Contour levels are

plotted at 10% of the peak and successive contours at multiples of 10%.

Figure 14: Gray scale representation of the resultant density for Model 3, the

prolate bar model.

Figure 15: Velocity vectors in the rotating, bar frame for two models of NGC
3992. Figure (a) is Model 3, while Figure (b) includes a central bulge. The bar
length and pdsition are shown as solid straight lines, the dashed show the locations
of the shock fronts, and the Gaussian radius of the bulge, , is shown as a solid,

circular arch. In each diagram, the bars rotate in a clockwise direction.
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